Negative Coupling as a Mechanism for Signal Propagation between C2 Domains of Synaptotagmin I

نویسندگان

  • Michael E. Fealey
  • Jacob W. Gauer
  • Sarah C. Kempka
  • Katie Miller
  • Kamakshi Nayak
  • R. Bryan Sutton
  • Anne Hinderliter
چکیده

Synaptotagmin I (Syt I) is a vesicle-localized protein implicated in sensing the calcium influx that triggers fast synchronous release of neurotransmitter. How Syt I utilizes its two C2 domains to integrate signals and mediate neurotransmission has continued to be a controversial area of research, though prevalent hypotheses favor independent function. Using differential scanning calorimetry and fluorescence lifetime spectroscopy in a thermodynamic denaturation approach, we tested an alternative hypothesis in which both domains interact to cooperatively disseminate binding information. The free energy of stability was determined for C2A, C2B, and C2AB constructs by globally fitting both methods to a two-state model of unfolding. By comparing the additive free energies of C2A and C2B with C2AB, we identified a negative coupling interaction between the C2 domains of Syt I. This interaction not only provides a mechanistic means for propagating signals, but also a possible means for coordinating the molecular events of neurotransmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis

Real-time voltammetry measurements from cracked PC12 cells were used to analyze the role of synaptotagmin-SNARE interactions during Ca2+-triggered exocytosis. The isolated C2A domain of synaptotagmin I neither binds SNAREs nor inhibits norepinephrine secretion. In contrast, two C2 domains in tandem (either C2A-C2B or C2A-C2A) bind strongly to SNAREs, displace native synaptotagmin from SNARE com...

متن کامل

Calcium triggers an intramolecular association of the C2 domains in synaptotagmin.

Synaptotagmin I is a critical component of the synaptic machinery that senses calcium influx and triggers synaptic vesicle fusion and neurotransmitter release. Fluorescence resonance energy transfer studies conducted on synaptotagmin demonstrate that calcium concentrations required for fusion induce a conformational change (EC(50) approximately 3 mM) that brings the two calcium-binding C2 domai...

متن کامل

Localization of synaptotagmin-binding domains on syntaxin.

Synaptotagmin, an abundant calcium- and phospholipid-binding protein of synaptic vesicles, has been proposed to regulate neurotransmitter release at the nerve terminal. To understand better the biochemical mechanism of neurotransmitter release, we have investigated the calcium-dependent and -independent protein-protein interactions between synaptotagmin I and syntaxin 1a, a subunit of the recep...

متن کامل

Internalization signals in synaptotagmin VII utilizing two independent pathways are masked by intramolecular inhibitions.

The synaptotagmin family of membrane proteins has been implicated in both exocytosis and endocytosis. Synaptotagmin I, a protein containing two tandem C2 domains (the C2A and the C2B) in its cytoplasmic tail, is involved in regulated exocytosis of synaptic vesicles as well as compensatory endocytosis. A related family member, synaptotagmin VII, is involved in multiple forms of regulated exocyto...

متن کامل

Pull-down combined with proteomic strategy reveals functional diversity of synaptotagmin I

Synaptotagmin I (Syt I) is most abundant in the brain and is involved in multiple cellular processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our present study employed a pull-down combined with proteomic strategy to identify the C2 domain-interacting proteins to comprehensively understand the biological roles of the C2 domains and thus the functional diversity of Syt ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012